
International Journal of Software Engineering and Its Applications

Vol. 10, No. 6 (2016), pp. 113-124

http://dx.doi.org/10.14257/ijseia.2016.10.6.10

ISSN: 1738-9984 IJSEIA

Copyright ⓒ 2016 SERSC

CUDA Accelerated Real-time Digital Image Stabilization in a

Video Stream

David Pacura and Martin Drahansky

Brno University of Technology, Faculty of Information Technology,

Bozetechova 2, 612 66, Brno, Czech Republic

xpacur00@stud.fit.vutbr.cz, drahan@fit.vutbr.cz

Abstract

The most important step for successful video processing in computer vision is its

stabilization. Often, it is required to process high resolution video in a real-time. In this

paper, a new method for a real-time digital image stabilization in a video stream is

presented. This method preserves the intended camera motion and exploits computing

power of GPGPU by utilizing CUDA programing interface. In order to reduce required

computation power, local search windows are used for the correspondence search of

consecutive video frames. These windows are further processed using Local Binary

Patterns, which enables fast correlation using bitwise XOR. The experiments on video

sequences from both car-mounted and hand-held camera have demonstrated the

effectiveness of this method. The speed of stabilization designates this method for video

preprocessing in real-time applications.

Keywords: Digital Image Stabilization, CUDA, Real-time Video Stabilization

1. Introduction

Over the past two decades, a rapid development in the field of electronic technology

brought, among other things, an increase of use of digital video cameras. Nowadays, as a

consequence, a wide variety of use cases where digital video camera is used exists (e.g.

video surveillance, reconnaissance, motion detection, target tracing or automatic

recognition). However, in many cases, camera device is mounted on moving objects (e.g.

ships, vehicles) or on high poles and towers, where object movement or gusting wind

causes camera shaking. In a lot of these cases, high resolution, high frames count per

second and steady image without parasitic effects like shake, jitter and blur is required.

This is due to requirements for successful post-processing like target tracking or

movement detection [1].

However, there is often limited space, resources or both to fulfill these requirements –

usage of hardware stabilization is in many cases highly restricted or even impossible. Yet,

a digital image stabilization can be used. This enables a use of smaller video cameras, but

requires high computing power for post-processing. Often, real-time processing of data is

also required, which increases requirements for computing power even more, because not

only video stabilization itself, but also additional required steps in the process must be

resolved almost immediately. This can be achieved by specialized hardware like FPGA

(field programmable gate array) or using GPGPU (general purpose graphics processing

unit). However, this paper will focus only on GPGPU because of its easy availability, low

price and relatively easy programming [2].

The key to video stabilization is the accurate global motion estimation. There are many

methods based on various approaches including gray based [3], frequency based [4] or

feature based [5] methods. Also, motion estimation can be computed in 2D [6][7], which

is suitable for long monitoring distances in outdoor conditions or 3D [8], which are

suitable for low focal distances, where obvious changes in parallaxes inducted by 3D

International Journal of Software Engineering and Its Applications

Vol. 10, No. 6 (2016)

114 Copyright ⓒ 2016 SERSC

viewpoint translations occurs. However, many of these approaches are not suitable for

real-time processing even in case of GPGPU use.

Another important step of video stabilization is motion filtering, when unwanted

shaking and jitter must be removed, but intended motion preserved. A number of low pass

filtering methods such as fuzzy filtering [9] or Gaussian weighting [10] exist. However,

these methods are not suitable for real-time processing, as they require information about

previous frames, or in worse case information about future frames, which introduces

undesirable delay. Another approaches are use of Kalman filter [11][12] which is an

optimal filter in the minimum variance sense. This filter is fast, but sensitive to parameter

values. Therefore, modifications like Adaptive Kalman filter [13][14] exists. Another

example is Particle filter [15][16] which is suitable for filtering of non-linear motion of

the camera. However, it has a great processing time consumption.

In our solution, a HD video is stabilized in real-time using GPU and CUDA. For this, a

binary technique is used for global motion estimation. Firstly, eight areas of concern

(SSW's – searching sub-windows) are selected in each frame. Then, they are binarized

using enhanced Local Binary Patterns [17] method. Next, the correlation template (MSW

– matching sub-window) is selected as a central part of corresponding SSW and is

correlated with previous SSW using Number of non-matching points (NNMP) [17]. Then,

eight best local motion vectors (LVMs) for each SSW is selected in order to enhance the

motion estimation. The last step is motion filtering. It is achieved by selection of median

value from LVMs. Selected value represents the translation between frames. However, in

order to preserve intended camera motion, Kalman filtering of selected translation is

performed.

The proposed solution utilizes GPGPU and CUDA to enable real-time stabilization of

HD video with the pixel precision even on older hardware. However, it is for the price of

no angle compensation between subsequent frames. Another problem is Kalman filtering

- it is unable to distinct between high jitter and sudden intended motion, which results into

delayed reaction to compensate sudden change of position.

2. GPGPU Acceleration

The general purpose graphic processing units (GPGPUs) are phenomenon of the last

decade. Their raw power greatly outperforms those of CPUs due to the use of hundreds of

simple computing cores (see Figure 1). Yet, GPU is still an accelerator connected through

peripheral component interconnect express bus (PCI-E) and requires host processor

(CPU) for work scheduling.

Further, the use of GPU brings multiple issues – beside slow access to GPU

memory (about 700 clock cycles), it is also branching sensitivity. This is a hardware

limitation (compromise between speed and universality). For this reason, executing

threads are organized into groups of 32, called warps [18]. As a result, threads in the

same warp should all take the same branch, otherwise performance penalty will

occur – threads execution will be serialized [18][19].

Therefore, the video stabilization is an ideal task for GPGPU, as the same set of

operations can be performed in parallel on all pixels of image. However, in order to

provide huge performance speedup over CPU, the algorithm must be properly

designed. Otherwise, it may not be faster than CPU.

2.1. CUDA Framework

The CUDA is a proprietary framework developed by NVIDIA which specializes

in graphics cards development. It works only with NVIDIA GPUs. Main features of

current version 7.5 are: unified memory between host and device, libraries for GPU

code, new work spawning from within GPU code or C++11 features like lambdas or

auto type specifiers. All CUDA versions are backward compatible, forward

International Journal of Software Engineering and Its Applications

Vol. 10, No. 6 (2016)

Copyright ⓒ 2016 SERSC 115

compatibility is guaranteed on binary level. Yet, the new features are often limited

to new hardware [20][21[22][23].

Figure 1. Development and Prediction of CPU and GPU Computing Power

Further, a great collection of powerful tools and libraries exists [24]: advanced

debugger and profiler or official free libraries (e.g. image processing primitives,

Standard Template Library equivalent).

3. Proposed Method for GPGPU Video Stabilization

In order to stabilize video, a correspondence between each pair of consecutive frames

must be found. The accuracy of this step is crucial to the successful video stabilization. In

proposed method, this is achieved using binarization approach. The second, but also

important step is motion filtering – the intended camera motion should be preserved,

while jitter should be removed. This is achieved by Kalman filtering.

However, before proceeding, the worst case scenario of video that should be

successfully stabilized and desired properties must be defined:

 Shaking up to the frequency of 15 Hz.

 FullHD input resolution.

 30 frames per second.

 Real-time processing.

3.1. Areas of Concern Selection

In order to both speed up computation and to enhance motion estimation, we decided to

split each frame into eight areas of concern (SSWs) around its edges (see Figure 2a). The

center square is not considered, as typically an object of interest is present in the central

part of each frame. This is optimization for both lowering required computational power

and to improve estimation of local and global motion vectors (object of interest can

perform movement independent of camera’s movement). If not considered, this would

bring unwanted error to global motion vector. SSWs have rectangular shape proportional

to the resolution of input frame. Because of the nature of jitter [25] and assuming that the

input video has at least 30 frames per second, the distance from the frame’s edge can be 5

% of resolution or less even for high focal lengths (e.g. F=600 mm). The size of matching

sub-windows must be small enough to bring significant savings in required power and big

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2008 2010 2012 2014 2016 2018

G
FL

O
P

S

Year

GPU CPU

International Journal of Software Engineering and Its Applications

Vol. 10, No. 6 (2016)

116 Copyright ⓒ 2016 SERSC

enough to have sufficient amount of details for searching in SSWs of the previous frame.

Therefore, size of the MSWs is 50 % of the SSWs size. The size of single SSW is 20 % of

the frame resolution. This together with 5 % distance from the edges leaves a total of 40

% of unused space (each gap between two SSWs is 15 % of resolution big). However, the

real dimensions can be adjusted based on the estimated maximal variation in each axis

that should be properly stabilized (e.g. if movement is expected in only one of axes, the

SSWs can be adjusted accordingly). This brings trade-off between speed and accuracy of

stabilization.

(a) (b)

Figure 2. (a) Input Frame with Marked Areas of Interest, (b) Detail of Top Left
Area of Interest from Item (a)

However, in order to speed up GPU computation (to overcome limitations discussed in

Section 2), a coalesced access to GPU’s memory must be ensured. Therefore, matching

sub-windows’s dimensions must be rounded to the multiple of 64. This also applies to

searching sub-windows: their dimensions must be updated to the double of those of

matching sub-windows.

3.2. Areas of Concern Processing

After the previous step, eight areas of concern exist. However, adjustments must be

made in order to further lower the computation requirements. This is achieved by

converting each area of full-bit frame into binary image by local binary pattern (LBP) in

order to enable template matching by simple XOR operation. However, conversion to

binary image itself is tricky – a high level of detail must be preserved after binarization

step (traditional methods tend to convert similar colors into the same binary value and

therefore omit some slight contrast changes which can be considered as edges). For this,

LBP binarization proposed by [17], which solves this issue, is used: each pixel of input

image is compared against P equally spaced reference pixels (points) forming a circle of a

radius R. Output value for each pixel of the output image is then computed:

 {
 ∑ ⌊ ⌋

 (1)

and

 {

 (2)

where P is the count of reference points, R is their radius, (i,j) is the coordinate of

currently processed pixel, p is the coordinate of current reference point, I is the function

returning image’s intensity value for given coordinate and ⌊ ⌋ denotes the largest integer

not greater than x.

International Journal of Software Engineering and Its Applications

Vol. 10, No. 6 (2016)

Copyright ⓒ 2016 SERSC 117

Figure 3. Searching Aub-window Area from Figure 2b. LBP Binarization [17]
Successfully Preserves Edges of Blurred Image

 This approach reduces the maximum number of comparisons and additions to

obtain pixel value to P. The performance of this method can be seen in Figure 3.

3.3. Local Motion Estimation

After the preprocessing step, local motion estimation can take place. Firstly, matching

sub-windows must be extracted from the binarized areas. After that, comparison of all

MSWs of current frame with the corresponding SSWs of previous frame is performed by

computing number of non-matching point criteria for each possible displacement [17]:

 ∑ ∑{ }

 (3)

and

 (4)

where (dx,dy) is the candidate displacement of the matching sub-window in the searching

sub-window, N is the MSW’s dimension (N×N), is MSW of current frame,

denotes SSW of previous frame, \oplus represents Boolean operation XOR and s is half

of the difference of the matching sub-windows and searching sub-windows dimensions.

This results into eight matrices of NNMP values, where each value’s index denotes

(dx,dy). From each list, the eight lowest values are taken and their coordinates become the

local motion vectors. This is an improvement suggested by [1] in order to enable

stabilization of frames without clear edges (e.g. desert, sea, snow). This gives in total of

64 LMVs vectors.

3.4. Global Motion Estimation and Filtering

Global motion vector (GMV) is computed for each frame as a median of all 64 LMVs:

 { } (5)

where d is the direction vector for x and y axes .

This filtration effectively removes LMVs, into which an error was introduced by object

of interest movement extended into the searching sub-windows.

However, in order to preserve intended movement of camera, another filtering is

needed: Typical shaky video consist of both intended motion and unwanted motion

(shaking). This two motions have different properties: Shaking typically consist of fast,

high frequency random changes of position (e.g. in case of hand-held camera, typical

frequency is up to 20 Hz [25]). This is filtered out by four dimensional Kalman filter -

International Journal of Software Engineering and Its Applications

Vol. 10, No. 6 (2016)

118 Copyright ⓒ 2016 SERSC

current frame stabilized location (x and y) is used as a measurement for Kalman filter

which yields new estimated position. Then, current frame location is compensated by

difference between estimated and real position. This process achieves effective smoothing

of camera path, where intended camera motion is preserved and shakiness discarded.

3.5. Motion compensation

The last step in digital image stabilization is the movement of image frames into final

form of stabilized output. Because one of the requirements is possibility of real-time

usage, a standard form of DIS is chosen. This consists of placing of current frame into

black background on corresponding location. As a consequence, stabilized video contains

disturbing black edges. In order to prevent this disturbances, a reduction of output

resolution can be performed using windowing: a window with resolution lower by MSW

size than that of the input video is placed into the center of each stabilized frame and non-

overlapping parts are discarded.

(a) (b)

Figure 4. Comparison of Compensated Frame (a) and Windowed Frame (b)

4. Experiments

The proposed method was tested using hardware listed in Table 1. As can be seen, used

hardware is fairy old and with mediocre performance.

Table 1. Used Hardware

Component Type Speed

CPU Intel Core 2 Quad Q6600 3.22 GHz

RAM 6 GB 1,066 MHz

GPU NVIDIA GTX 560Ti-448 930 MHz

 1.28 GB 2.20 GHz

For testing of proposed algorithm, four video sequences were created. An overview of

their common measurable properties is in Table 2. Each sequence incorporates different

situation and movement:

Table 2. Testing Video Sequences and their Properties

Video name Resolution [px] FPS

walking 1280×720 30

car-ride 1280×720 60

object-tracking 1920×1080 60

pan&zoom 1920×1080 60

International Journal of Software Engineering and Its Applications

Vol. 10, No. 6 (2016)

Copyright ⓒ 2016 SERSC 119

"walking" This video sequence was created by hand-held compact camera during

walking through hall with bad luminance conditions. Therefore, it contains blurry frames

and changing parallaxes.

"car-ride" This video sequence was recorded from camera mounted inside car.

Shooting was performed during sunny weather. However, video contains focus changes

between infinity and interior and rapid shaking caused by car going through potholes.

"object-tracking" This video sequence is shot with hand-held camera with F=500

mm. It tracks movement of distant object during good light conditions.

"pan&zoom" This video sequence is also shot with hand-held camera. However, this

time with the "panorama" effect (smooth position changes) and big zoom changes.

Each video sequence was stabilized using proposed method. A total of 5 different sizes

of matching sub-windows was used in order to check its suitability for real-time

processing. In this case, real-time processing refers to the ability to stabilize video

sequence at least at the speed of 24 FPS (frames per second), which is the international

standard speed used in many video cameras. The measured results are in Table 3. As can

be seen, used GPU can process in real-time MSWs with resolution of 96×96 px, while

there is still time left for further processing. This windows sizes enables processing of HD

video with no problems and processing of FullHD video with lower amount of jitter. With

age and performance of the used hardware, this can be considered as a great result. Also,

it can be assumed, that use of newer, more powerful hardware will enable real-time use

even for bigger MSW sizes.

MSW resolution FPS Processing

speed [ms]

64×64 188.2 5.3

128×64 80.0 12.5

96×96 31.7 31.5

128×128 23.0 43.5

128×96 19.0 52.6

Table 3. Relationship between Matchin Sub-window Size and Frame
Processing Speed

Further, the proposed method performance was compared with CUDA video

stabilization method implemented in OpenCV libraries [26]. The processing speed

achieved 29.9 FPS (33.5 ms) for video resolution of 1280×720 px and 22.1 FPS (45.2 ms)

for video resolution of 1920×1080 px, which is slower than the proposed method.

OpenCV's method enables real-time stabilization of HD video with some space left for

further processing. However, for FullHD video, real-time stabilization itself is not

possible. The lower processing speed is due to the fact, that, OpenCV's method

compensates also inter-frame rotation and uses image inpaiting to remove black edges.

In theory, processing speed declines quadratically with rising dimensions of matching

window (this is due to the correlation complexity of . However, the testing shows, that

real penalty of dimensions doubling is slightly smaller. This is due to the fact, that

correlation with smaller search window resolutions is not demanding enough to fully

utilize GPU.

International Journal of Software Engineering and Its Applications

Vol. 10, No. 6 (2016)

120 Copyright ⓒ 2016 SERSC

Table 4. Stabilization Quality Comparison of Proposed Method with Method
Implemented in OpenCV Library

Video name Original ITF

[db]

Proposed

ITF [db]

Method in

[26] ITF [db]

walking 21.0 22.3 21.5

car-ride 27.7 28.9 28.0

object-tracking 21.1 21.5 22.2

pan&zoom 20.6 25.3 24.2

The quality of jitter filtering and intended camera motion preservation was firstly

compared with results of method available in OpenCV (see table 4). For this reason, the

inter-frame transformation fidelity metrics (ITF) [27] was implemented:

∑

 (6)

where:

 (7)

Is the peak signal-to-noise ratio between two consecutive frames, where:

∑ ∑‖ ‖

 (8)

is the mean square error between monochromatic images with dimensions of M×N,

is the maximum possible pixel intensity in the frame and is the k
th
 frame from

sequence.

As can be seen, the proposed method slightly outperforms method from [26] in three

video sequences (except the pan&zoom sequence). However, subjective visual

comparison with method implemented in [6] has shown, that despite the nearly the same

ITF values, proposed method better compensates high frequency jitter (see [28]). Further,

the difference between stabilized and shaky video sequences is subjectively much greater

than is show by ITF metrics. Therefore, it can be concluded, that this metrics is not

suitable for video sequences containing changes of camera position and/or tracked object

position.

Figure 5. Motion Filtration Results for the ”car-ride” Video Sequence: actual
and filtered path of the camera motion in y axis. The filtered motion is

smooth and sensitivity to the sudden short position changes declines with
time.

-50

0

50

100

150

0 50 100 150 200 250 300 350 400 450 500

p
o

si
ti

o
n

 [
p

x]

frame [-]

original stabilized

International Journal of Software Engineering and Its Applications

Vol. 10, No. 6 (2016)

Copyright ⓒ 2016 SERSC 121

Figure 6. Motion Filtration Results for the ”walking” Video Sequence: actual
and filtered path of the camera motion in x axis. The filtered motion is

smooth, but Kalman filtering fails to straighten motion caused by walking.

Next, video stabilization quality was further evaluated both visually and using discrete

Fourier transform to analyze present frequencies. The visual comparison of real and

filtered motion can be seen in Figures 5 and 6. It is obvious, that in case of low jitter in

the "car-ride" video sequence, the filtering is excellent. However, in "walking" video

sequence, filtered motion fails to straighten the camera path and as a consequence, it is

dangling. Therefore, in order to address this issue, further research is required to enhance

used Kalman filtering.

The analysis of frequency components for y axis of walking video sequence is shown

in Figure 8. As can be seen, unfiltered motion contains a high amount of frequency

changes around 1 Hz and 2 Hz. Beside those peaks, a lot of other, higher frequencies is

present. However, the filtration successfully removes jitter and only low frequencies

representing intended camera motion are preserved. Filtrated motion contains high

amount of no motion, few smooth motions up to 1 Hz and very low amount of other

frequencies. Therefore, proposed video stabilization method can be considered as an

excellent.

5. Conclusions

In this paper, a new method for real-time video stabilization empowering the power of

GPGPU was proposed. In order to achieve real-time stabilization of HD video sequences,

eight areas of interest distributed regularly around the frame edges were selected. They

were further processed using fast LBP image binarization technique. This enabled fast

correspondence search between two consecutive frames using simple XOR during

correlation. The selection of optimal stabilization path was achieved using 64 best

responses of correlation (8 responses for each area of interest), from which median value

was selected for each axis. The desired shift to compensate displacement between

following video frames was corrected using Kalman filtering. This enabled to preserve

intended camera motion. Algorithm itself was implemented using the CUDA API.

For the testing purposes, four HD video sequences were created. They were processed

using different sizes of search windows, which is the trade-off between the speed and

accuracy of stabilization (low search window dimensions can cause improper stabilization

in case of sudden and distant pose change). Test results on the used hardware shown, that

real-time processing (24 FPS) is possible for search window sizes up to 192×192 px (the

dimensions of matching template are half of search window dimensions; see Table 3 for

detailed results). This enables successful real-time stabilization of both HD and FullHD

video. Based on the used hardware (see Table 1) and its performance, it can be assumed

-400

-200

0

200

0 50 100 150 200 250 300 350 400 450 500

p
o

si
ti

o
n

 [
p

x]

frame [-]

original stabilized

International Journal of Software Engineering and Its Applications

Vol. 10, No. 6 (2016)

122 Copyright ⓒ 2016 SERSC

that use of more current (and more powerful) hardware would enable real-time processing

even for bigger search windows sizes. The quality of stabilization itself was evaluated

using ITF metrics [27], when inter-frame difference is measured. Also, proposed method

was compared with method implemented in [26] using the same hardware. This method

was greatly outperformed by proposed method in terms of speed and slightly in terms of

achieved ITF. Next, visual comparison of camera path before and after Kalman filtering

was performed (see Figures 5 and 6). The results can be evaluated as good, because

corrected camera path had smooth proceedings. However, further improvements can be

achieved, as Kalman filtering fails to quickly respond to the sudden intended changes of

camera pose and to straighten dangling motion of low frequency. The third evaluation

method was done by frequency analysis of the camera path before and after stabilization

(see Figure 7). Their comparison shows, that prior to the stabilization, frequency peaks

were present over the whole spectrum with occasional peaks at certain frequencies.

However, they were successfully removed by Kalman filtering and only desired motion

with frequencies lower than 2 Hz was preserved.

(a)

(b)

Figure 7. Frequency Analysis of the y axis path for ”walking” Video
Sequence: before motion filtration (a) and after motion filtration (b).

Stabilization successfully removed unwanted motion of higher frequencies

These tests has shown, that use of GPGPU brings great performance gain and enables

real-time video stabilization even on a fairly average hardware. Also, despite the

simplicity of the method, the quality of video stabilization is excellent.

However, in order to use proposed method in real-life applications, further research is

required. This concerns mainly filtering of unwanted motion, where Kalman filter is not

sufficient and some kind of hybrid technique is required. Also, in some applications, it

might by suitable to incorporate rotation angle compensation.

0E+0

1E+3

2E+3

3E+3

0 2 4 6 8 10 12 14 16

va
lu

e
[-

]

f [Hz]

0E+0

1E+3

2E+3

3E+3

0 2 4 6 8 10 12 14 16

va
lu

e
[-

]

f [Hz]

International Journal of Software Engineering and Its Applications

Vol. 10, No. 6 (2016)

Copyright ⓒ 2016 SERSC 123

Acknowledgments

The research described in this paper was supported by The Ministry of Education,

Youth and Sports of the Czech Republic from the National Programme of Sustainability

(NPU II) project “IT4Innovations excellence in science - LQ160” and the internal Brno

University of Technology project FIT-S-14-2486 “Reliability and security in IT” (CZ).

References
[1] M. Drahansky, F. Orsag, and P. Hanacek. Accelerometer based digital video stabilization for general

security surveillance systems. International Journal of Security and Its Applications, 1(1):10, 2010.

[2] S. Mittal and J. S. Vetter. A survey of methods for analyzing and improving GPU energy efficiency.

ACM Comput. Surv. 47, 2(19):23, July 2014.

[3] E. Monteiro, B. Vizzotto, C. Diniz, B. Zatt, and S. Bampi. Applying cuda architecture to accelerate full

search block matching algorithm for high performance motion estimation in video encoding. IEEE

International Symposium on Computer Architecture and High Performance, pages 128–135, 2011.

[4] S. Kumar, H. Azartash, M. Biswas, and T. Nguyen. Real-time affine global motion estimation using

phase correlation and its application for digital image stabilization. IEEE Transactions on Image

Processing, 20(12):3406–3418, December 2011.

[5] S.W. Kim, S. Yin, K. Yun, and J. Y. Choi. Spatiotemporal weighting in local patches for direct

estimation of camera motion in video stabilization. Computer Vision and Image Understanding, 118:71–

83, January 2014.

[6] M. Grundmann, V. Kwatra, and I. Essa. Autodirected video stabilization with robust l1 optimal camera

paths. IEEE International Conference on Computer Vision and Pattern Recognition, pages 225–232,

2011.

[7] M. Okade and P. K. Biswas. Video stabilization using maximally stable extremal region features.

Multimedia Tools and Applications, 68(3):947–968, February 2014.

[8] F. Liu, M. Gleicher, H.-L. Jin, and A. Agarwala. Content preserving warps for 3d video stabilization.

ACM Transactions on Graphics, 28(3):1–9, 2009.

[9] M. J. Tanakian, M. Rezaei, and F. Mohanna. Realtime video stabilization by adaptive fuzzy filtering.

International Conference on Computer and Knowledge Engineering, pages 126–131, 2011.

[10] Z. H. Zhou, H. L. Jin, and Y. Ma. Plane-based content preserving warps for video stabilization. IEEE

international conference on Computer Vision and Pattern Recognition, pages 2299–2306, 2013.

[11] K. Ohyu, S. Jeongho, and P. Joonki. Video stabilization using kalman filter and phase correlation

matching. Image Analysis and Recognition, pages 141–148, 2005.

[12] A. Litvin, J. Konrad, and V. C. Karl. Probabilistic video stabilization using kalman filtering and

mosaicking. SPIE Symposium on Image and Video Communications and Processing, pages 663–674,

2003.

[13] Y. G. Ryu and M. J. Chung. Robust online digital image stabilization based on point-feature trajectory

without accumulative global motion estimation. IEEE SIGNAL PROCESSING LETTERS, 19(4):223–

226, 2012.

[14] C. T. Wang, J. H. Kim, K. Y. Byun, J. Q. Ni, and S. J. Ko. Robust digital image stabilization using the

kalman filter. IEEE Transactions on Consumer Electronics, 55(1):6–14, 2009.

[15] C. H. Song, H. Hai, W. Jing, and H. B. Zhu. Robust video stabilization based on particle filtering with

weighted feature points. IEEE Transactions on Consumer Electronics, 58(2):570–577, 2012.

[16] J. Yang, D. Schonfeld, and M. Mohamed. Robust video stabilization based on particle filter tracking of

projected camera motion. IEEE Transactions on Circuits and Systems for Video Technology,

19(7):945–954, 2009.

[17] B. Kir, M. Kurt, and O. Urhan. Local binary pattern based fast digital image stabilization. Signal

Processing Letters, 3(22):341–345, 2015.

[18] NVIDIA. Cuda c best practices guide, September 2015. http://docs.nvidia.com/cuda/cuda-c-best-

practices-guide/index.htm.

[19] AMD. Amd accelerated parallel processing - opencl programming guide, November 2013.

http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_

Programming_Guide-rev-2.7.pdf.

[20] NVIDIA. Cuda 4.0, 2011.

http://developer.download.nvidia.com/compute/cuda/4_0/CUDA_Toolkit_4.0_Overview.pdf.

[21] NVIDIA. Cuda 5.0, 2012. http://on-demand.gputechconf.com/gtc/2012/presentations/SS104-CUDA-5-

What’s-New.pdf.

[22] NVIDIA. Cuda 6.0, April 2014. http://devblogs.nvidia.com/parallelforall/powerful-new-features-cuda-

6/.

[23] NVIDIA. Cuda 7.0, January 2015. http://devblogs.nvidia.com/parallelforall/cuda-7-feature-overview/.

[24] NVIDIA. Cuda tools and ecosystem. https://developer.nvidia.com/cuda-tools-ecosystem.

[25] F. L. Rosa, M. C. Virzi, F. Bonaccorso, and M. Branciforte. Optical image stabilization.

International Journal of Software Engineering and Its Applications

Vol. 10, No. 6 (2016)

124 Copyright ⓒ 2016 SERSC

[26] OpenCV. Video stabilization, December 2015.

http://docs.opencv.org/trunk/d5/d50/group__videostab.html#gsc.tab=0.

[27] J. Xu, H. W. Chang, S. Yang, and M. Wang. Fast feature-based video stabilization without accumulative

global motion estimation. IEEE Transactions on Consumer Electronics, 58(3):993–999, 2012.

[28] Pacura, D. Car-ride CUDA video stabilization comparison with OpenCV implementation, March 2016.

https://youtu.be/Z5FDnbTbfSE.

Authors

David Pacura is the master’s program student at the Brno

University of Technology, Faculty of Electrical Engineering and

Communication, Department of Control and Instrumentation and

Faculty of Information Technology, Department of Intelligent

Systems. He specializes in the field of Computer Vision and Image

Processing.

 Martin Drahanský graduated in 2001 at the Brno University of

Technology, Faculty of Electrotechnics and Computer Science in

Czech Republic. He achieved his Ph.D. grade in 2005 at the Brno

University of Technology, Faculty of Information Technology. In

2010 he achieved his Associate professor grade at the Brno

University of Technology, Faculty of Information Technology,

Department of Intelligent Systems. His research topics include

biometrics, security and cryptography, artificial intelligence and

sensoric systems. For more information – see please

http://www.fit.vutbr.cz/~drahan.

