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Abstract 

The most important step for successful video processing in computer vision is its 

stabilization. Often, it is required to process high resolution video in a real-time. In this 

paper, a new method for a real-time digital image stabilization in a video stream is 

presented. This method preserves the intended camera motion and exploits computing 

power of GPGPU by utilizing CUDA programing interface. In order to reduce required 

computation power, local search windows are used for the correspondence search of 

consecutive video frames. These windows are further processed using Local Binary 

Patterns, which enables fast correlation using bitwise XOR. The experiments on video 

sequences from both car-mounted and hand-held camera have demonstrated the 

effectiveness of this method. The speed of stabilization designates this method for video 

preprocessing in real-time applications. 
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1. Introduction 

Over the past two decades, a rapid development in the field of electronic technology 

brought, among other things, an increase of use of digital video cameras. Nowadays, as a 

consequence, a wide variety of use cases where digital video camera is used exists (e.g. 

video surveillance, reconnaissance, motion detection, target tracing or automatic 

recognition). However, in many cases, camera device is mounted on moving objects (e.g. 

ships, vehicles) or on high poles and towers, where object movement or gusting wind 

causes camera shaking. In a lot of these cases, high resolution, high frames count per 

second and steady image without parasitic effects like shake, jitter and blur is required. 

This is due to requirements for successful post-processing like target tracking or 

movement detection [1]. 

However, there is often limited space, resources or both to fulfill these requirements – 

usage of hardware stabilization is in many cases highly restricted or even impossible. Yet, 

a digital image stabilization can be used. This enables a use of smaller video cameras, but 

requires high computing power for post-processing. Often, real-time processing of data is 

also required, which increases requirements for computing power even more, because not 

only video stabilization itself, but also additional required steps in the process must be 

resolved almost immediately. This can be achieved by specialized hardware like FPGA 

(field programmable gate array) or using GPGPU (general purpose graphics processing 

unit). However, this paper will focus only on GPGPU because of its easy availability, low 

price and relatively easy programming [2]. 

The key to video stabilization is the accurate global motion estimation. There are many 

methods based on various approaches including gray based [3], frequency based [4] or 

feature based [5] methods. Also, motion estimation can be computed in 2D [6][7], which 

is suitable for long monitoring distances in outdoor conditions or 3D [8], which are 

suitable for low focal distances, where obvious changes in parallaxes inducted by 3D 
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viewpoint translations occurs. However, many of these approaches are not suitable for 

real-time processing even in case of GPGPU use. 

Another important step of video stabilization is motion filtering, when unwanted 

shaking and jitter must be removed, but intended motion preserved. A number of low pass 

filtering methods such as fuzzy filtering [9] or Gaussian weighting [10] exist. However, 

these methods are not suitable for real-time processing, as they require information about 

previous frames, or in worse case information about future frames, which introduces 

undesirable delay. Another approaches are use of Kalman filter [11][12] which is an 

optimal filter in the minimum variance sense. This filter is fast, but sensitive to parameter 

values. Therefore, modifications like Adaptive Kalman filter [13][14] exists. Another 

example is Particle filter [15][16] which is suitable for filtering of non-linear motion of 

the camera. However, it has a great processing time consumption.  

In our solution, a HD video is stabilized in real-time using GPU and CUDA. For this, a 

binary technique is used for global motion estimation. Firstly, eight areas of concern 

(SSW's – searching sub-windows) are selected in each frame. Then, they are binarized 

using enhanced Local Binary Patterns [17] method. Next, the correlation template (MSW 

– matching sub-window) is selected as a central part of corresponding SSW and is 

correlated with previous SSW using Number of non-matching points (NNMP) [17]. Then, 

eight best local motion vectors (LVMs) for each SSW is selected in order to enhance the 

motion estimation. The last step is motion filtering. It is achieved by selection of median 

value from LVMs. Selected value represents the translation between frames. However, in 

order to preserve intended camera motion, Kalman filtering of selected translation is 

performed. 

The proposed solution utilizes GPGPU and CUDA to enable real-time stabilization of 

HD video with the pixel precision even on older hardware. However, it is for the price of 

no angle compensation between subsequent frames. Another problem is Kalman filtering 

- it is unable to distinct between high jitter and sudden intended motion, which results into 

delayed reaction to compensate sudden change of position. 

 

2. GPGPU Acceleration 

The general purpose graphic processing units (GPGPUs) are phenomenon of the last 

decade. Their raw power greatly outperforms those of CPUs due to the use of hundreds of 

simple computing cores (see Figure 1). Yet, GPU is still an accelerator connected through 

peripheral component interconnect express bus (PCI-E) and requires host processor 

(CPU) for work scheduling. 

Further, the use of GPU brings multiple issues – beside slow access to GPU 

memory (about 700 clock cycles), it is also branching sensitivity. This is a hardware 

limitation (compromise between speed and universality). For this reason, executing 

threads are organized into groups of 32, called warps [18]. As a result, threads in the 

same warp should all take the same branch, otherwise performance penalty will 

occur – threads execution will be serialized [18][19]. 

Therefore, the video stabilization is an ideal task for GPGPU, as the same set of 

operations can be performed in parallel on all pixels of image. However, in order to 

provide huge performance speedup over CPU, the algorithm must be properly 

designed. Otherwise, it may not be faster than CPU.  

 

2.1. CUDA Framework 

The CUDA is a proprietary framework developed by NVIDIA which specializes 

in graphics cards development. It works only with NVIDIA GPUs. Main features of 

current version 7.5 are: unified memory between host and device, libraries for GPU 

code, new work spawning from within GPU code or C++11 features like lambdas or 

auto type specifiers. All CUDA versions are backward compatible, forward 
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compatibility is guaranteed on binary level. Yet, the new features are often limited 

to new hardware [20][21[22][23]. 

 

Figure 1. Development and Prediction of CPU and GPU Computing Power 

Further, a great collection of powerful tools and libraries exists  [24]: advanced 

debugger and profiler or official free libraries (e.g. image processing primitives, 

Standard Template Library equivalent). 

 

3. Proposed Method for GPGPU Video Stabilization 

In order to stabilize video, a correspondence between each pair of consecutive frames 

must be found. The accuracy of this step is crucial to the successful video stabilization. In 

proposed method, this is achieved using binarization approach. The second, but also 

important step is motion filtering – the intended camera motion should be preserved, 

while jitter should be removed. This is achieved by Kalman filtering. 

However, before proceeding, the worst case scenario of video that should be 

successfully stabilized and desired properties must be defined: 

  Shaking up to the frequency of 15 Hz. 

  FullHD input resolution. 

  30 frames per second. 

  Real-time processing. 

 

3.1. Areas of Concern Selection 

In order to both speed up computation and to enhance motion estimation, we decided to 

split each frame into eight areas of concern (SSWs) around its edges (see Figure 2a). The 

center square is not considered, as typically an object of interest is present in the central 

part of each frame. This is optimization for both lowering required computational power 

and to improve estimation of local and global motion vectors (object of interest can 

perform movement independent of camera’s movement). If not considered, this would 

bring unwanted error to global motion vector. SSWs have rectangular shape proportional 

to the resolution of input frame. Because of the nature of jitter [25] and assuming that the 

input video has at least 30 frames per second, the distance from the frame’s edge can be 5 

% of resolution or less even for high focal lengths (e.g. F=600 mm). The size of matching 

sub-windows must be small enough to bring significant savings in required power and big 
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enough to have sufficient amount of details for searching in SSWs of the previous frame. 

Therefore, size of the MSWs is 50 % of the SSWs size. The size of single SSW is 20 % of 

the frame resolution. This together with 5 % distance from the edges leaves a total of 40 

% of unused space (each gap between two SSWs is 15 % of resolution big). However, the 

real dimensions can be adjusted based on the estimated maximal variation in each axis 

that should be properly stabilized (e.g. if movement is expected in only one of axes, the 

SSWs can be adjusted accordingly). This brings trade-off between speed and accuracy of 

stabilization. 

 

  

(a) (b) 

Figure 2. (a) Input Frame with Marked Areas of Interest, (b) Detail of Top Left 
Area of Interest from Item (a) 

However, in order to speed up GPU computation (to overcome limitations discussed in 

Section 2), a coalesced access to GPU’s memory must be ensured. Therefore, matching 

sub-windows’s dimensions must be rounded to the multiple of 64. This also applies to 

searching sub-windows: their dimensions must be updated to the double of those of 

matching sub-windows. 

 

3.2. Areas of Concern Processing 

After the previous step, eight areas of concern exist. However, adjustments must be 

made in order to further lower the computation requirements. This is achieved by 

converting each area of full-bit frame into binary image by local binary pattern (LBP) in 

order to enable template matching by simple XOR operation. However, conversion to 

binary image itself is tricky – a high level of detail must be preserved after binarization 

step (traditional methods tend to convert similar colors into the same binary value and 

therefore omit some slight contrast changes which can be considered as edges). For this, 

LBP binarization proposed by [17], which solves this issue, is used: each pixel of input 

image is compared against P equally spaced reference pixels (points) forming a circle of a 

radius R. Output value for each pixel of the output image is then computed: 

 

            {
    ∑                  ⌊   ⌋

   

   

          

 (1) 

and 

         {
    
          

 (2) 

where P is the count of reference points, R is their radius, (i,j) is the coordinate of 

currently processed pixel, p is the coordinate of current reference point, I is the function 

returning image’s intensity value for given coordinate and ⌊ ⌋ denotes the largest integer 

not greater than x. 
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Figure 3. Searching Aub-window Area from Figure 2b. LBP Binarization [17] 
Successfully Preserves Edges of Blurred Image 

 This approach reduces the maximum number of comparisons and additions to 

obtain pixel value to P. The performance of this method can be seen in Figure 3. 

 

3.3. Local Motion Estimation 

After the preprocessing step, local motion estimation can take place. Firstly, matching 

sub-windows must be extracted from the binarized areas. After that, comparison of all 

MSWs of current frame with the corresponding SSWs of previous frame is performed by 

computing number of non-matching point criteria for each possible displacement [17]:  

 

            ∑ ∑{                        }

   

   

   

   

 (3) 

and 

              (4) 

 

where (dx,dy) is the candidate displacement of the matching sub-window in the searching 

sub-window, N is the MSW’s dimension (N×N),    is MSW of current frame,      

denotes SSW of previous frame, $\oplus$ represents Boolean operation XOR and s is half 

of the difference of the matching sub-windows and searching sub-windows dimensions. 

This results into eight matrices of NNMP values, where each value’s index denotes 

(dx,dy). From each list, the eight lowest values are taken and their coordinates become the 

local motion vectors. This is an improvement suggested by [1] in order to enable 

stabilization of frames without clear edges (e.g. desert, sea, snow). This gives in total of 

64 LMVs vectors. 

 

3.4. Global Motion Estimation and Filtering 

Global motion vector (GMV) is computed for each frame as a median of all 64 LMVs: 

            {       }            (5) 

where d is the direction vector for x and y axes          . 

This filtration effectively removes LMVs, into which an error was introduced by object 

of interest movement extended into the searching sub-windows. 

However, in order to preserve intended movement of camera, another filtering is 

needed: Typical shaky video consist of both intended motion and unwanted motion 

(shaking). This two motions have different properties: Shaking typically consist of fast, 

high frequency random changes of position (e.g. in case of hand-held camera, typical 

frequency is up to 20 Hz [25]). This is filtered out by four dimensional Kalman filter - 
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current frame stabilized location (x and y) is used as a measurement for Kalman filter 

which yields new estimated position. Then, current frame location is compensated by 

difference between estimated and real position. This process achieves effective smoothing 

of camera path, where intended camera motion is preserved and shakiness discarded.  

 

3.5. Motion compensation 

The last step in digital image stabilization is the movement of image frames into final 

form of stabilized output. Because one of the requirements is possibility of real-time 

usage, a standard form of DIS is chosen. This consists of placing of current frame into 

black background on corresponding location. As a consequence, stabilized video contains 

disturbing black edges. In order to prevent this disturbances, a reduction of output 

resolution can be performed using windowing: a window with resolution lower by MSW 

size than that of the input video is placed into the center of each stabilized frame and non-

overlapping parts are discarded. 

  

(a) (b) 

Figure 4. Comparison of Compensated Frame (a) and Windowed Frame (b) 

4. Experiments 

The proposed method was tested using hardware listed in Table 1. As can be seen, used 

hardware is fairy old and with mediocre performance. 

Table 1. Used Hardware 

Component Type Speed 

CPU Intel Core 2 Quad Q6600 3.22 GHz 

RAM 6 GB 1,066 MHz 

GPU NVIDIA GTX 560Ti-448 930 MHz 

 1.28 GB 2.20 GHz 

For testing of proposed algorithm, four video sequences were created. An overview of 

their common measurable properties is in Table 2. Each sequence incorporates different 

situation and movement: 

Table 2. Testing Video Sequences and their Properties 

Video name Resolution [px] FPS 

walking 1280×720 30 

car-ride 1280×720 60 

object-tracking 1920×1080 60 

pan&zoom 1920×1080 60 
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"walking" This video sequence was created by hand-held compact camera during 

walking through hall with bad luminance conditions. Therefore, it contains blurry frames 

and changing parallaxes. 

"car-ride" This video sequence was recorded from camera mounted inside car. 

Shooting was performed during sunny weather. However, video contains focus changes 

between infinity and interior and rapid shaking caused by car going through potholes.  

"object-tracking" This video sequence is shot with hand-held camera with F=500 

mm. It tracks movement of distant object during good light conditions.  

"pan&zoom" This video sequence is also shot with hand-held camera. However, this 

time with the "panorama" effect (smooth position changes) and big zoom changes. 

Each video sequence was stabilized using proposed method. A total of 5 different sizes 

of matching sub-windows was used in order to check its suitability for real-time 

processing. In this case, real-time processing refers to the ability to stabilize video 

sequence at least at the speed of 24 FPS (frames per second), which is the international 

standard speed used in many video cameras. The measured results are in Table 3. As can 

be seen, used GPU can process in real-time MSWs with resolution of 96×96 px, while 

there is still time left for further processing. This windows sizes enables processing of HD 

video with no problems and processing of FullHD video with lower amount of jitter. With 

age and performance of the used hardware, this can be considered as a great result. Also, 

it can be assumed, that use of newer, more powerful hardware will enable real-time use 

even for bigger MSW sizes. 

MSW resolution FPS Processing 

speed [ms] 

64×64 188.2 5.3 

128×64 80.0 12.5 

96×96 31.7 31.5 

128×128 23.0 43.5 

128×96 19.0 52.6 

Table 3. Relationship between Matchin Sub-window Size and Frame 
Processing Speed 

Further, the proposed method performance was compared with CUDA video 

stabilization method implemented in OpenCV libraries [26]. The processing speed 

achieved 29.9 FPS (33.5 ms) for video resolution of 1280×720 px and 22.1 FPS (45.2 ms) 

for video resolution of 1920×1080 px, which is slower than the proposed method. 

OpenCV's method enables real-time stabilization of HD video with some space left for 

further processing. However, for FullHD video, real-time stabilization itself is not 

possible. The lower processing speed is due to the fact, that, OpenCV's method 

compensates also inter-frame rotation and uses image inpaiting to remove black edges.  

In theory, processing speed declines quadratically with rising dimensions of matching 

window (this is due to the correlation complexity of   . However, the testing shows, that 

real penalty of dimensions doubling is slightly smaller. This is due to the fact, that 

correlation with smaller search window resolutions is not demanding enough to fully 

utilize GPU.  
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Table 4. Stabilization Quality Comparison of Proposed Method with Method 
Implemented in OpenCV Library 

Video name Original ITF 

[db] 

Proposed 

ITF [db] 

Method in 

[26] ITF [db] 

walking 21.0 22.3 21.5 

car-ride 27.7 28.9 28.0 

object-tracking 21.1 21.5 22.2 

pan&zoom 20.6 25.3 24.2 

The quality of jitter filtering and intended camera motion preservation was firstly 

compared with results of method available in OpenCV (see table 4). For this reason, the 

inter-frame transformation fidelity metrics (ITF) [27] was implemented:  

 

    
 

  
∑        

    

   

 (6) 

where: 

 
                

     

      
 (7) 

Is the peak signal-to-noise ratio between two consecutive frames, where: 

 

       
 

   
∑ ∑‖                 ‖

   

   

   

   

 (8) 

is the mean square error between monochromatic images with dimensions of M×N,       

is the maximum possible pixel intensity in the frame and    is the k
th
 frame from 

sequence.  

As can be seen, the proposed method slightly outperforms method from [26] in three 

video sequences (except the pan&zoom sequence). However, subjective visual 

comparison with method implemented in [6] has shown, that despite the nearly the same 

ITF values, proposed method better compensates high frequency jitter (see [28]). Further, 

the difference between stabilized and shaky video sequences is subjectively much greater 

than is show by ITF metrics. Therefore, it can be concluded, that this metrics is not 

suitable for video sequences containing changes of camera position and/or tracked object 

position. 

 

Figure 5. Motion Filtration Results for the ”car-ride” Video Sequence: actual 
and filtered path of the camera motion in y axis. The filtered motion is 

smooth and sensitivity to the sudden short position changes declines with 
time. 
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Figure 6. Motion Filtration Results for the ”walking” Video Sequence: actual 
and filtered path of the camera motion in x axis. The filtered motion is 

smooth, but Kalman filtering fails to straighten motion caused by walking. 

Next, video stabilization quality was further evaluated both visually and using discrete 

Fourier transform to analyze present frequencies. The visual comparison of real and 

filtered motion can be seen in Figures 5 and 6. It is obvious, that in case of low jitter in 

the "car-ride" video sequence, the filtering is excellent. However, in "walking" video 

sequence, filtered motion fails to straighten the camera path and as a consequence, it is 

dangling. Therefore, in order to address this issue, further research is required to enhance 

used Kalman filtering.  

The analysis of frequency components for y axis of walking video sequence is shown 

in Figure 8. As can be seen, unfiltered motion contains a high amount of frequency 

changes around 1 Hz and 2 Hz. Beside those peaks, a lot of other, higher frequencies is 

present. However, the filtration successfully removes jitter and only low frequencies 

representing intended camera motion are preserved. Filtrated motion contains high 

amount of no motion, few smooth motions up to 1 Hz and very low amount of other 

frequencies. Therefore, proposed video stabilization method can be considered as an 

excellent. 

 

5. Conclusions 

In this paper, a new method for real-time video stabilization empowering the power of 

GPGPU was proposed. In order to achieve real-time stabilization of HD video sequences, 

eight areas of interest distributed regularly around the frame edges were selected. They 

were further processed using fast LBP image binarization technique. This enabled fast 

correspondence search between two consecutive frames using simple XOR during 

correlation. The selection of optimal stabilization path was achieved using 64 best 

responses of correlation (8 responses for each area of interest), from which median value 

was selected for each axis. The desired shift to compensate displacement between 

following video frames was corrected using Kalman filtering. This enabled to preserve 

intended camera motion. Algorithm itself was implemented using the CUDA API.  

For the testing purposes, four HD video sequences were created. They were processed 

using different sizes of search windows, which is the trade-off between the speed and 

accuracy of stabilization (low search window dimensions can cause improper stabilization 

in case of sudden and distant pose change). Test results on the used hardware shown, that 

real-time processing (24 FPS) is possible for search window sizes up to 192×192 px (the 

dimensions of matching template are half of search window dimensions; see Table 3 for 

detailed results). This enables successful real-time stabilization of both HD and FullHD 

video. Based on the used hardware (see Table 1) and its performance, it can be assumed 
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that use of more current (and more powerful) hardware would enable real-time processing 

even for bigger search windows sizes. The quality of stabilization itself was evaluated 

using ITF metrics [27], when inter-frame difference is measured. Also, proposed method 

was compared with method implemented in [26] using the same hardware. This method 

was greatly outperformed by proposed method in terms of speed and slightly in terms of 

achieved ITF. Next, visual comparison of camera path before and after Kalman filtering 

was performed (see Figures 5 and 6). The results can be evaluated as good, because 

corrected camera path had smooth proceedings. However, further improvements can be 

achieved, as Kalman filtering fails to quickly respond to the sudden intended changes of 

camera pose and to straighten dangling motion of low frequency. The third evaluation 

method was done by frequency analysis of the camera path before and after stabilization 

(see Figure 7). Their comparison shows, that prior to the stabilization, frequency peaks 

were present over the whole spectrum with occasional peaks at certain frequencies. 

However, they were successfully removed by Kalman filtering and only desired motion 

with frequencies lower than 2 Hz was preserved. 

 

(a) 

 

(b) 

Figure 7. Frequency Analysis of the y axis path for ”walking” Video 
Sequence: before motion filtration (a) and after motion filtration (b). 

Stabilization successfully removed unwanted motion of higher frequencies 

These tests has shown, that use of GPGPU brings great performance gain and enables 

real-time video stabilization even on a fairly average hardware. Also, despite the 

simplicity of the method, the quality of video stabilization is excellent. 

However, in order to use proposed method in real-life applications, further research is 

required. This concerns mainly filtering of unwanted motion, where Kalman filter is not 

sufficient and some kind of hybrid technique is required. Also, in some applications, it 

might by suitable to incorporate rotation angle compensation. 
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